Plasma cell-free RNA profiling of Vietnamese Alzheimer's patients reveals a linkage with chronic inflammation and apoptosis: a pilot study

Thien Hoang Minh Cao¹, Anh Phuc Hoang Le¹, Tai Tien Tran², Vy Kim Huynh¹, Bao Hoai Pham¹, Thang Cong Tran⁴, Trang Mai Tong³, The Ha Ngoc Than³, Tran Tran To Nguyen³, Huong Thi Thanh Ha¹ ¹School of Biomedical Engineering, International University, Vietnam National University - HCMC ²Pham Ngoc Thach University of Medicine, Vietnam ³University Medical Center, Ho Chi Minh City ⁴April 30th Hospital, Ho Chi Minh City

Plasma cf-RNA can address Alzheimer's diagnostic challenges

Circulating cell-free RNA (cf-RNA) is considered a potential biomarker for early diagnosis of Alzheimer's Disease (AD) as it can construe the genetic expression level, giving insights into the pathological progress at the outset. By inspecting molecular changes in AD, these procedures can predict the pathology in advance, aiding the quality of life of Vietnamese in the rural area.

→ Goals

Identify the key drivers of expression changes in cfRNA between Alzheimer's patient and healthy controls Examine whether the cfRNA transcripts significantly correlate with clinical indications of Alzheimer's disease

Transcriptomic profiling of plasma cf-RNA

Differential expression analysis shows contrast in transcriptomic profile of Alzheimer's patients

Figure 1: Volcano plot of the correlation between the log2foldchange and the adjusted p-value of 533 detected genes (grey - p > 0.05, green -p < 0.05; orange -p < 0.0001 and abs(log2foldchange) > 20)

Figure 2: Clustered heatmap of expression of the top 30 genes with the highest variance

Co-expressed gene modules are associated with potential AD processes

Figure 4: Network visualization of key genes in each module and their associated Gene Ontology annotations.

Conclusions

(1) We have identified some gene clusters that are potentially related to the pathogenesis of Alzheimer's. (2) We have identified some candidate genes (YTHDC1, SASH1, ITPRID2. ANKRD36B, TAOK3, EEF2, RNF213) that are highly correlated with Alzheimer's disease clinical indications.

Limitations & Future directions

Small sample size (n=20) -> Need to validate the identified candidate genes with a larger cohort of samples to ascertain their value in early diagnosis of Alzheimer's disease

Significant genes are associated with immune response and neuronal death

Figure 3: Visualization of genes associated with neuronal activity and immune response

Significant genes are correlated with **Alzheimer's clinical indicators**

Acknowledgements

We would like to give special thanks to the clinicians working at the University Medical Center - Ho Chi Minh City, subjects and their families. We would also like to thank Dr. Liem Phan, Dr. Nam Nguyen, Prof. Thuy Ngo, the Vietnam Alzheimer Network program, Prof. Sally Kim, and Mr. Thomas Nguyen for their assistance during this project. Research reported in this publication was supported by the National Institute of Aging (NIA) of the National Institutes of Health (NIH) under award number R01AG064688 (Hinton/Nguyen MPI). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIA and the NIH

-> References

Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559 Reddy, J. S., Jin, J., Lincoln, S. J., Ho, C. C. G., Crook, J. E., Wang, X., Malphrus, K. G., Nguyen, T., Tamvaka, N., Greig-Custo, M. T., Lucas, J. A., Graff-Radford, N. R., Ertekin-Taner, N., & Carrasquillo, M. M. (2022). Transcript levels in plasma contribute substantial predictive value as potential Alzheimer's disease biomarkers in African Americans. EBioMedicine, 78, 103929. Scheltens, P., Leys, D., Barkhof, F., Huglo, D., Weinstein, H. C., Vermersch, P., Kuiper, M., Steinling, M., Wolters, E. C., & Valk, J. (1992). Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. Journal of Neurology, Neurosurgery, and Psychiatry, 55(10), 967–972. Shigemizu, D., Mori, T., Akiyama, S., Higaki, S., Watanabe, H., Sakurai, T., Niida, S., & Ozaki, K. (2020). Identification of potential blood biomarkers for early diagnosis of Alzheimer's disease through RNA sequencing analysis. Alzheimer's Research & Therapy, 12(1), 1–12. Toden, S., Zhuang, J., Acosta, A. D., Karns, A. P., Salathia, N. S., Brewer, J. B., Wilcock, D. M., Aballi, J., Nerenberg, M., Quake, S. R., & Ibarra, A. (2020). Noninvasive characterization of Alzheimer's disease by circulating, cell-free messenger RNA next-generation sequencing. Science Advances, 6(50). https://doi.org/10.1126/sciadv.abb1654

Correspondence: chmthien@gmail.com